杜克大學的研究人員提出了一種 AI 算法,稱之為 PULSE(Photo Upsampling via Latent Space Exploration,通過潛在空間探索的照片上采樣)。
該算法可以將模糊、無法識別的人臉圖像轉換成計算機生成的圖像,其細節比之前任何時候都更加精細、逼真。

餓了么算法專家劉金介紹推薦業務背景,包括推薦產品形態及算法優化目標;然后是算法的演進路線;最后重點介紹在線學習是如何在餓了么推薦領域實踐的
優酷推薦業務,算法應用場景眾多,需求靈活多變,需要一套通用業務框架,支持運行時的算法流程的裝配,提升算法服務場景搭建的效率
通過分析其中的關鍵問題,建立了新熱內容曝光敏感模型,并最終給出一種曝光資源約束下的多目標優化保量框架與算法
針對結算收銀場景中商品識別的難點,從商品識別落地中的模型選擇、數據挑選與標注、前端和云端部署、模型改進等方面,進行了深入講解
神經形態結構融合學習和記憶功能領域的研究主要集中在人工突觸的可塑性方面,同時神經元膜的固有可塑性在神經形態信息處理的實現中也很重要
機器學習就是通過經驗來尋找它學習的模式,而人工智能是利用經驗來獲取知識和技能,并將這些知識應用于新的環境
滴滴機器學習場景下的 k8s 落地實踐與二次開發的技術實踐與經驗,包括平臺穩定性、易用性、利用率、平臺 k8s 版本升級與二次開發等內容
大型商用時序數據壓縮的特性,提出了一種新的算法,分享用深度強化學習進行數據壓縮的研究探索
深度學習模型:OverFeat、R-CNN、SPP-Net、Fast、R-CNN、Faster、R-CNN、R-FCN、Mask、R-CNN、YOLO、SSD、YOLOv2、416、DSOD300、R-SSD
SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目標檢測算法優缺點對比及使用場合比較
人體姿態估計便是計算機視覺領域現有的熱點問題,其主要任務是讓機器自動地檢測場景中的人“在哪里”和理解人在“干什么”
Adam 算法便以其卓越的性能風靡深度學習領域,該算法通常與同步隨機梯度技術相結合,采用數據并行的方式在多臺機器上執行