本文將詳解優酷“智能檔”的是什么、為什么以及落地效果,尤其是如何突破“傳統自適應碼率算法”的局限,解決視頻觀看體驗中高清和流暢的矛盾,并以 “熱綜熱劇”等場景為藍本,一睹“大項目”背后的視頻播放實踐。
本文主要分為四部分:
背景:智能檔是什么、有什么?
挑戰:傳統自適應碼率理論與播放實踐的碰撞
實踐:清晰度策略優化迭代過程——整體框架建設,從數據中分析和學習
總結:優酷智能檔的成果和新技術的應用
優酷“智能檔”是什么、有什么?
為了大家能夠對優酷智能檔有一個比較直觀的了解,我這里準備了一個帶寬限速條件下播放的視頻。視頻1是傳統1080P藍光清晰度,視頻2就是今天要提到的“智能“清晰度。我們看到視頻1已經開始卡了,視頻2還在繼續播放,但清晰度角標已經變為超清了。
好,剛剛播放的是《長安十二時辰》張小敬追捕狼衛的一段視頻,是在帶寬限速的情況下播放的,大致是在 1.5Mbps 左右。在這樣的條件下左側使用 1080P清晰度,當畫面變化較大,對應的碼率也波動較大的時候,發生了卡頓,而且提示是否要切換到智能播放。而右側的“智能”清晰度則在這種情況下,發現了網絡不足以支撐藍光,降級變成了超清,避免了卡頓,然后在這段播過去之后又重新恢復到藍光。
▐ 優酷“智能檔”簡介
看完這段視頻,我們來明確一下,關于智能檔的幾個基本問題:
1) 什么是智能檔,這個大家剛剛也都看到了,智能檔是一種新的清晰度選項。
2) 為什么要有智能檔?我們可以從兩個角度回答:
讓播放體驗更加智能。例如,用戶在一個不確定的網絡環境下,不知道什么清晰度最合適,選擇高清晰度,卡了;選擇低清晰度,畫質體驗又不好。優酷智能檔就是要解決這個選擇問題,智能匹配最合適的清晰度,避免用戶自己反復去嘗試;
避免播放卡頓。例如剛才的《長安十二時辰》視頻,在網絡限速或者更常見的4G下,網絡波動大,智能檔實時地調節清晰度,在保證用戶觀看更高清晰度的情況下,避免播放卡頓。
3) 是如何實現的呢?這就要提到自適應碼率技術,根據網絡環境和播放過程中的狀態,去實時決策選擇最合適的清晰度。
▐ 自適應碼率技術
自適應碼率這項技術,早在 2002 年前后就已經被人提出,大致在 2010 年開始在互聯網領域得到應用,逐步走向成熟。關于自適應碼率的技術方案,一般由兩部分構成:
第一部分協議框架:支持多個不同碼率的清晰度傳輸和播放,約定服務器端、客戶端的;
第二部分算法策略:更具體地確定什么狀態下匹配哪種碼率、哪種清晰度更好。
在協議框架上,蘋果較早提出了 HLS 的方案。后來 MPEG 專家組提出行業標準DASH;除此之外,微軟、Adobe等公司也有技術方案,但設計上比較類似,大同小異。
在算法策略上,是百花齊放。過去幾年,學術界涌現出不少相關論文,比如右側列表中所示,歸納起來分為4類:
第一類,基于網速預測,根據網速帶寬和碼率的大小進行選擇;
第二類,基于播放器的buffer來判斷決策;
第三類,引用一句話網絡名言“小孩子才做選擇,我全都要”,即融合前面兩種因素;
第四類,更高級和領先的,將近幾年的人工智能領域的技術引進來,根據機器學習、神經網絡模型來選擇清晰度。
▐ 自適應碼率技術的工作流程
自適應碼率技術在從生產到播放的整個鏈路,分成5步:
第一步,原始的視頻資源文件,它可能只有一個比較高的清晰度;
第二步,生產端對視頻進行轉碼和切片,根據播放需要,轉碼成不同清晰度的碼流。一般清晰度越高,碼率越高,文件越大。每個碼流都切分成時間對齊的分片,一般是10s;
第三步,在轉碼和切片之后,經過 CDN 節點在網絡上進行分發;
第四步,各自適應碼率的算法按策略選擇需要的清晰度;
第五步:客戶端下載這個清晰度的分片文件,進行播放。
▐ 自適應碼率算法:基于帶寬速率
看完框架鏈路,我們再來看算法策略,先是最簡單的基于帶寬的策略。
這類算法的原理很簡單,就是基于過去一段時間的網絡下載速度,對網絡情況做預測,如果比視頻某一個清晰度的碼率大,那么就可以選擇這個碼率,否則只能嘗試更低清晰度。右上角圖中列出了4種算法,都是基于速度進行判斷的,清晰度和網速變化是正相關。
這個算法簡單直接,缺點是如果過去網速高,對網絡的預估又過于自信,網絡波動落差大時,就無法下載完預期的清晰度內容,容易卡頓。
另外,清晰度受網絡波動影響大,網絡一波動,就會頻繁的切換清晰度,這相當于忽略掉播放器中buffer的作用。
▐ 自適應碼率算法:基于Buffer
基于buffer,就是播放器的緩沖區還能播多長時間來選擇。這種方式直接放棄速度,只看 buffer,沒數據可播時才會卡。當buffer 低時,選擇最低清晰度,buffer隨播放進度和下載進度一點點變化,清晰度不會有太大波動。
缺點是buffer的變化相對緩慢,會喪失對網絡變化判斷的靈敏性。比如用戶網絡換環境立刻變好了,但是 buffer 漲到最高清晰度的區間是需要一個過程的。
一個典型的案例就是 BBA 算法,我們可以右側這張圖,橫軸是 buffer,縱軸是清晰度碼率,它們之間維持一個線性關系,buffer越高清晰度越高,直到達到最高的清晰度;同時為了保證不卡頓,最低清晰度也要攢夠一定的buffer,才開始考慮換更高的清晰度。
▐ 自適應碼率算法-MPC
這類算法有一個里程碑式的進步,給出一個 QoE 的公式化定義。QoE就是體驗質量,包含清晰度、卡頓時間、清晰度切換3個因素。一旦確立好QoE 的計算公式,在網絡狀況完全確定的情況下,我們就可以將自適應碼率算法轉化為一個求最大值的數學問題。
但是網絡狀況完全確定需要“上帝視角”。一般情況下,網絡波動是可完全預測的,在一個較短時間內,我們認為網絡波動會比較小,后面網絡情況和前面已經統計到的速度存在一定關聯性,所以上面的這種求全局最大值的就可以退化成為一種局部的計算,并嘗試通過局部累加,達到近似全局最優解,這好比是從一個全局的動態規劃變成一個局部的貪心思路。
所以它的具體決策過程是:
第一步,根據過去的情況,判斷網絡質量,預測速度;
第二步,生成未來N片,比如5片,將所有可能的清晰度組合做列表;
第三步,逐一嘗試,找出所有可選項中 QoE 最大的組合;
第四步,將選擇中下一片清晰度作為本次清晰度選項,每個分片選擇時都依次類推。
▐ 自適應碼率算法-基于機器學習
機器學習就是為計算機提供大量數據,讓計算機基于這些數據進行計算,在特定領域做出判斷,并針對判斷給出評定標準,告知機器判斷是否正確、準確,經過反復大量的學習過程,提高計算機判斷能力的準確性。
強化學習是機器學習的一種,是針對一個過程該如何做決策的學習。
如下圖,機器人學習養花,看見花要枯死了,選擇用水澆花,獲得一個正向的獎勵;如果看到花快被淹死了,還去澆花,那么就只能得到懲罰,此外還可以根據情況考慮是否施肥、打藥,訓練機器人把花養好。
近年比較火的機器學習方式就是深度神經網絡。我們可以將“養花過程中機器人的動作” 理解為一個非常復雜的數學函數,輸入是花的狀態,輸出是應該澆水還是施肥的決策選擇,花是否養好作為不斷調整函數內參數的依據,一旦參數調整好,這個函數就可以給出準確決策,神經網絡就相當于這個復雜的函數,具體的一個模型實例就相當于這個函數里所需的所有系數。
我們做清晰度選擇的例子和養花的過程很像,輸入是過去的網速情況、buffer情況等,輸出是清晰度的選擇。
2017年開始有論文提出類似的方案,優點是用大量的數據去訓練,訓練好了就相當一個“經驗豐富”的人,它看過很多歷史網絡變化的數據和選擇結果、知道遇到特定的情況應該如何選擇。弊端是太“高深莫測”,可解釋性不強。
▐ 業界應用情況
國外的視頻產品,Youtube 和 Netflix的手機客戶端都有對自適應碼率技術的應用。在國內,早在兩年前,優酷就在做類似嘗試,但最初的清晰度選項叫做“自動”,在起播時幫用戶選擇一個合適的清晰度,但是播放過程中如果網絡有波動它不會變。隨著優酷技術體系不斷升級,現在優酷能夠通過“智能”選項,隨時隨地的根據網絡情況進行清晰度選擇和必要的切換。
實際應用中的挑戰
自適應碼率技術的理論雖好,在大規模實踐中,卻屢屢碰壁,歸納起來有如下的挑戰:
▐ 實際應用中的挑戰:起播處理
起播的典型挑戰是:
典型策略:環境未知,如何避免卡頓;
網絡環境良好的狀態下,如何提升清晰度。按照學術界的算法論文,起播時為了避免卡頓,都是從最低清晰度開始,但實際尤其對于沒有使用過同類產品的用戶,10s的模糊不能被接收的;
起播速度:如何快速播放。為了高清和起播后不卡頓,多加載一會兒,行不行?不行!快速起播是良好播放體驗的開始。
所以我們要遵循的原則是:
如果網絡足夠好,起播就提供高清晰度;
為了避免卡頓和起播太慢,必須在網絡差的情況,適當地選擇低清晰度;
不能為清晰度選擇而給播放帶來太大的額外開銷。
優酷是如何解決的?
首先,根據視頻是否為首次播放進行分類。不是首次播放的,可參考前一次播放的清晰度;是首次播放的,參考播放服務的請求耗時。在連播情況下,既然可以用上一次播放的清晰度,也可以利用上一次的播放中的速度信息,更確切知道當時的網絡情況;
其次,我們發現請求耗時的區分度并不大。播放器也在進行一個網絡質量評估的項目,這樣就引入了網絡評分機制,作為清晰度的一項參考;
最后,秒播項目也全面鋪開,在播放前下載一個分片。一方面下載過程提供了速度信息,另一方面我們也需要結合分片的清晰度進行選擇,避免起播清晰度頻繁波動。
▐ 實際應用中的挑戰——網絡情況預測
第二個挑戰就是對網絡情況的判斷,即對帶寬的預測;雖然不少論文都提到了根據歷史下載速度求平均值,對當前或接下來速度做預測,但是關于細節基本都避而不談。
網速非常重要,它是對當前網絡判斷最直接的數據來源,也是保證升降檔快速靈活的一個關鍵因素。
速度預測的難點是網絡情況是實時變化的,不同環境變化形式和方向都不同。例如,上圖中就是截然不同的兩種網絡條件,第一個網速高且穩定,第二個網速在極速波動。所以預測速度的原則是盡量保守、盡量平緩,吸收掉波動情況,即對過去一段時間的速度取平均值。平均值的計算方式,可以結合上圖的兩種情況來看:
一是,傳統算數平均數和調和平均數的方式;
二是,將對過去速度預測的誤差考慮進去,也是robustmpc方案中提到的,更適合我們的需求。
那么,只有速度預估就夠了嗎?當然不是。由于網速是可隨時波動的,實際網速也可能達不到預測速度,所以我們需要兜底方案。這里采用的是超時,即在預期的時間內,如果當前清晰度分片下載不完,將自動調整,避免 buffer 消耗后發生卡頓。
超時設置也需要精心考量,超時意味著當前分片如果下載不完就要丟棄,那么已下載完成的部分是不能用來播放的,否則就會出現同一視頻內容用兩種不同的清晰度重復播放。所以buffer較小時,不適合超時,否則容易增加卡頓。
什么情況設置超時呢?預期超時是用來解決問題的,首先是選擇清晰度預期它能下載完,如果下載不完,我們可以用更低清晰度來替代。我們要保證現有的buffer足夠這兩個清晰度下載完成的時間,此外要盡量留足時間,讓當前清晰度的下載能夠在較小的波動下完成,避免頻繁切帶來的網絡浪費和不好體驗。
體驗衡量
隨著智能檔的推廣和應用,我們也需要考慮帶寬成本,行業通用解決方案是使用 PCDN,在播放允許的情況下,避免直接向成本較高的CDN服務器請求轉而找到成本較低,但質量不太穩定的節點,這樣就會引起速度的波動。
這個問題如何解決?首先,PCDN 調度的原則,是將 buffer 趨于劃分為三段:第一段是buffer較低的情況,為了避免卡頓保證服務質量,會直接走CDN;第二段是部分從CDN下載,部分使用質量較差的P2P節點;第三段是buffer較高的情況,卡頓風險低,直接斷開CDN,只使用P2P。
簡單來說,為了保證智能檔用戶有穩定體驗,我們在節點切換的過程中,始終保持使用一個較高的速度,比如使用連接CDN時的速度,如果 P2P的速度比 CDN的速度高,我們可以使用這個更高的速度,當質量較差的節點滿足不了當前速度時,buffer就會降低,迫使PCDN逐步切換回高質量的節點,這樣就做到了和 PCDN結合的自適應調整,做到了速度的相對穩定。
▐ 實際應用中的挑戰——其它
在實踐過程中面臨的挑戰,如何衡量智能檔的體驗,如何評價效果。
學術論文的衡量標準是看QoE,它包含了對清晰度質量、卡頓和清晰度波動的因素。但它是單一值,兩次不同的播放,QoE一個高一個低,說明前一個體驗更好,但是無法知道差的原因,是卡頓太多還是清晰度太低?所以單一值,不利于我們衡量真實效果,也不利于明確優化方向。
所以,我們最終通過和實際業務目標相結合,整體看全盤數據,同時將卡頓率、高清晰度的播放時長占比拆開來看?D率高了,要想辦法降卡頓,策略上要相對保守;如果高清晰度少了,就要適當調整策略,讓用戶更容易升到高清晰度。
此外,播放的體驗好不好需要多維度考量,除以上兩個關鍵指標外,我們也增加了其它維度數據,比如,使用智能檔用戶的播放量占比、一次播放的清晰度切換頻次,高buffer降檔的反常體驗發生比率等。
實際上,我們在實踐的過程中遇到的挑戰還不止這些,比如倍速播放的情況,4G下考慮流量的問題等。受時間和篇幅的限制,就不一一展開了。
智能檔的設計、實現與優化迭代
以上介紹了自適應碼率技術的一般原理和挑戰,接下來從整體分析,優酷智能檔是如何設計的,又是如何優化。
▐ 優酷智能檔的整體結構設計
智能檔的整體框架分為上下兩部分,下層是客戶端,上層是服務器端。
第一,清晰度選擇的控制器是在客戶端,包含一個策略引擎,支持多種策略實現運行,為策略的運行提供了統一接口;控制器需要與播放器內核的數據源處理部分打交道,從播放器內核獲取到視頻的基本信息,比如支持幾個清晰度、每個清晰度碼率多少,有多少個分片、每個分片多大,同時也從播放器收集當前的播放狀態,比如當前的buffer 狀態;此外,客戶端還需要從下載器那里得到各分片的下載速度,從全局的網絡監測模塊感知當前的網絡質量情況,最后執行策略,輸出下一個清晰度,通過內核交由下載器去下載,進而播放;
第二,智能檔的控制器每次播放后會收集整個決策過程中的輸入/輸出信息,并上報到服務器端,服務器端用這個數據做統計、分析、優化,然后進一步改進策略,形成一套完整的閉環的數據體系。
▐ 策略實現-多策略支持
結合前面算法論文中的理論,我們先后嘗試過實現四種策略:
第一種:Pattaya 是我們最早嘗試的一種策略,將單獨基于速度的一類策略,后來也引入了基于 buffer 策略,不斷根據數據情況增加一些經驗規則進去,也是早期進行鏈路調試的一個策略;
第二種:基于強化學習的策略;
第三種:實現和調試了基于 MPC 思路的策略;
第四種:根據經驗創造出來的,基于下載嘗試和超時的SBit策略。
我們以 AB Test 的形式分桶開啟各個策略,觀察效果逐步優化,最終形成一套統一策略,包含起播/Seek決策、播中決策、超時處理、卡頓處理等幾個關鍵組成部分。
▐ 數據體系建設-信息的收集與解析
上面提到四類策略,在衡量效果時,我們提到了一些關鍵指標,相關的統計數據在上線之初就進行了支持。那么,這四類策略是不是上線就表現良好,表現不好的原因是什么,這就需要對每一次播放數據的輸入和輸出都有詳細記錄,如圖中的數據結構。
第一步,早期我們考慮一次播放的決策數據量比較大,同時還不具備這種批量數據處理分析的能力,主要是以日志的方式打出來;
第二步,我們了解到阿里云的數據工場能夠提供這樣一種能力,通過自定義 UDF 解析結構復雜的編碼數據,并且通過一般的編程語言以實現插件的形式,完成各式各樣的分析,這樣我們就將客戶端上每次播放的所有相關的輸入和輸出,按照一定的格式組織起來,進行壓縮、編碼通過埋點渠道報上來,需要分析的時候在數據平臺上解碼分析。
上圖,是一個經過編碼的智能檔播放信息,報到服務器端之后,我們通過數據平臺對立面的信息進行解析。當然這張圖立面只畫出了其中一部分信息,包含原始的輸入速度、預測的速度、播放器buffer的變化情況,這樣整個智能檔的決策過程就盡收眼底。
▐ 數據體系建設-優化應用
當完整數據體系建立之后,我們就可以進行優化。下面以卡頓優化為例,我們是這樣操作的:
第一步,當版本發布后,觀察整體的大盤數據,發現卡頓超出預期,我們會分析用戶用例,對卡頓情況有初出認知。
第二步,基于已知信息做分類規則,比如,是起播就卡,還是播了很久之后才卡;是因為網絡差,清晰度降底都還會卡,還是在策略上有優化的空間?
第三步,根據規則將所有發生過卡頓的播放數據做聚合分析,知道每種可能情況的占比,有針對性分優先級的去解決和處理問題;
不只卡頓,還是其它像高清晰度沒有達到預期,都可以用這種方式進行分析。這些數據除了分析這些問題以外,還有利于我們對整個優酷用戶播放過程有一個更全面的了解,比如說他們的網絡情況分布等。
▐ 智能檔的應用推廣
在智能檔完成設計、實現、優化,我們希望它能夠在更多的場景上得到應用。智能檔最初是在手機兩端上率先完善和放量,其次是iPad端。在過去一年,我們也在iKu OTT 等客戶端場景下投入使用。
這里面需要強調是大型直播場景,比如雙11貓晚、近期的義演直播《相信未來》,直播和點播場景有差異:
第一、直播要求低延遲,比如看球賽,不能隔壁進球了,這里還在射門。所以這個特點就決定了端上播放器不能有太多buffer,智能檔的決策需要做適當的調整,更多的從網速上獲取信息;
第二、直播是實時性的,生產端生產出視頻流是實時進行的,而且通常的直播時長比一集電視劇時間還要長,所以存在技術風險,這時候智能檔就有了用武之地。
和直播場景有關的第一個問題是流量控制,某一場直播開始前,會預估流量,但實際可能因為某個節目特別火爆,新用戶源源不斷地涌進來。在服務器流量壓力大時,智能檔可以通過實時下發配置適當的調整用戶的清晰度,例如,必要情況下,降低一個清晰度,實時緩解服務器帶寬和流量壓力。這是傳統清晰度所做不到的,傳統清晰度可能從進入直播間到看完就固定在一個清晰度碼率上。
另外一個常見問題是直播時,在生產端可能會出現某一路流轉碼失敗,智能檔發現問題后,可以直接標記這路流不可用,在后面的播放切到其它相近的清晰度時,保證整體直播效果不會受到太大的影響。
智能檔的應用總結及未來
在過去一年,優酷智能檔已經逐漸走向成熟:
優酷智能檔在過去一年的建設過程中,覆蓋了移動端約30%的播放量,甚至比播放某些傳統的清晰度播放量都高;
從智能檔內的各個清晰度播放時長來看,能夠讓用戶在90% 以上的時間觀看比較高的清晰度,同時保持著比一般清晰度更低的卡頓率,尤其在 4G 網絡下,能夠做到傳統清晰度的一半;
智能檔為優酷整體的播放體驗優化提供了工具,也在直播等場景成為了技術保障的必要手段;
最重要的,經過過去一年的優化,獲得了用戶的認可。
對于未來,主要有兩點思考:
隨著 5G 的發展,越來越多的用戶將移動蜂窩網絡下觀看視頻,智能檔會得到更多應用?赡艽蠹乙獑柫,5G網速那么快,還需要智能檔嗎?這里我想到了一句話,"What Andy gives Bill takes away",“安迪比爾定律”,這里面 Andy 是 Intel 的 CEO, Bill就是比爾蓋茨了。意思是無論 Intel的 CPU 造的多么先進,都會被新的 Windows 系統消耗掉;氐讲シ艌鼍,網絡技術是在發展,但人們對高清視頻的需求也在不斷提高,所以智能檔是必要的;
另外,一定會出現新的手段,讓自適應碼率技術的效果更好。比如今天提到的Pensieve,利用強化學習來進行清晰度選擇。這個原作者在 2019 年又發表了一篇新論文,大致內容是他又改進了算法模型,開始在 Facebook 進行實驗,這是個未來的方向,現在的可解釋性等等問題應該都會逐步得到解決。
機器人招商 Disinfection Robot 機器人公司 機器人應用 智能醫療 物聯網 機器人排名 機器人企業 機器人政策 教育機器人 迎賓機器人 機器人開發 獨角獸 消毒機器人品牌 消毒機器人 合理用藥 地圖 |